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Reconstruction of Subsurface Objects by LSM and
FWI From Limited-Aperture Electromagnetic Data
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Abstract— This article presents a hybrid 3-D electromag-
netic (EM) full-wave inversion (FWI) method for the reconstruc-
tion of subsurface objects illuminated by an antenna array with
the limited aperture. The 3-D linear sampling method (LSM)
is first used to qualitatively reconstruct the rough shapes and
locations of the subsurface objects. Then, the 3-D convolutional
neural network (CNN) U-Net is used to further refine the
images of the unknown objects. Finally, the Born iterative
method (BIM) is implemented to quantitatively invert for the
dielectric parameters of subsurface inhomogeneous objects or
multiple homogeneous objects in the restricted image regions.
Numerical simulations show that, compared with the pure FWI
method BIM, the proposed hybrid method can reconstruct
subsurface 3-D objects from limited-aperture EM data with
both higher accuracy and lower computational cost. In addition,
the proposed hybrid method also shows a strong antinoise ability
for the reconstruction of multiple subsurface objects.

Index Terms— Convolutional neural network (CNN), full-wave
inversion (FWI), linear sampling method (LSM), subsurface
reconstruction.

I. INTRODUCTION

SUBSURFACE detection is important for both civil-
ian and military activities. It has been widely used

in archeology [1], buried pipe inspection [2], pavement
crack surveys [3], landmine detection [4], environmental
characterization [5], and so on.

Commonly used methods of subsurface detection include
reverse time migration (RTM), Kirchhoff migration (KM),
linear sampling method (LSM), and so on. The basic idea
of RTM is to use the correlation between the incident wave
and the reflected wave in the timestamp of the target space
position [6]. By transmitting the reflected wave pulse recorded
by the receiver back to the inversion domain, we can obtain
the focused image of the target. RTM is the most accurate
imaging method among the current migration methods without
being affected by the tilt angle and the migration aperture [7].
However, its computational cost is unaffordable [8], especially
for 3-D subsurface imaging. By contrast, KM is characterized
by its simplicity [9] and still remains the most practical
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approach for 3-D prestack imaging. The principle of KM
is to backpropagate the scalar wavefront observed at the
receiver array to the imaging domain based on an integral
solution of the scalar wave equation. The applicability of
KM to electromagnetic (EM) imaging is because a vector
wave equation can reduce to a scalar wave equation in a
homogeneous isotropic medium. Unfortunately, the imaging
effect of KM is not accurate as that of RTM. In addition,
the cost of KM will also increase rapidly as the measurement
scale increases [10]. As for LSM [11], its pivotal idea is to
convert the EM field measured at the receiver array into the
far-field spherically symmetric wave radiated by the fictitious
focal source in the inversion domain. Compared with the
previous two migration imaging methods, its calculation is
faster. However, all these imaging methods are qualitative,
that is to say, they can only reconstruct the positions and
general shapes of the subsurface objects and cannot retrieve
their dielectric constant values that are extremely essential for
identifying these objects.

Full-wave inversion (FWI) is one of the most popular
methods to quantitatively invert for both the geometry and
dielectric parameters of the subsurface objects [12]. The
traditional FWI method is to establish the objective function
of the model parameters of the unknown objects first. It is
usually the error functional of the modeled and the measured
scattered fields [13]. Then, the optimal solutions of the
model parameters are obtained by minimizing the objective
function. However, there are two inherent drawbacks in EM
FWI: ill-posedness and nonlinearity [14]. Ill-posedness is
because the number of receivers is far less than the number
of model parameters of unknown objects, which results in the
instability and nonuniqueness of the FWI solution. Compared
with that in the full-aperture EM inversion, the ill-posedness
in the limited-aperture EM inversion is more severe. The
most common method to mitigate the ill-posedness is adding
the regularization term into the objective function to constrain
the solution range [15]. Nonlinearity means the scattered
EM field recorded at the receiver array changes nonlinearly
with the unknown model parameters. As a result, iteration
is inevitable in order to find them [16]. The frequently used
iterative methods include Born iterative method (BIM) [17],
contrast source inversion (CSI) [18], subspace optimization
method (SOM) [19], and their variants [20], [21] as well
as the hybridization [22], [23] and so on. However, the cost
of these iterative algorithms is also high, especially for 3-D
inversion problems.
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In this study, we propose a threefold hybrid method to
overcome the aforementioned shortcomings of EM FWI in the
application of subsurface detection. Initially, we reconstruct
the approximate shapes and positions of subsurface objects
through the 3-D LSM [24]. However, the obtained shapes
are relatively poor due to the limited aperture of the receiver
array. Thus, we use a 3-D convolutional neural network (CNN)
U-Net [25], [26] to perform certain repairs to obtain relatively
more accurate shapes. Finally, we perform the FWI in the more
accurate repaired regions using BIM. As the 3-D inversion
domain is compressed, the number of unknowns used to
depict the scatterers is reduced. The ill-posedness is alleviated.
Simultaneously, the cost of iterative calculation is also greatly
reduced. In addition, because the LSM calculation is fast and
the neural network prediction is instantaneous, the additional
computational cost of the hybrid method is negligible. It is
worth mentioning that our hybrid method is different from the
hybrid methods presented in [27] and [28]. In [27], the LSM is
first used to estimate the supports of inhomogeneous scatterers,
and then, the Born approximation is applied to the linearized
scattering equation to obtain super-resolution scatterer images.
In [28], the Gauss–Newton minimization assisted by the line
search method is employed to reconstruct the dielectric objects
from measured data with limited observation angles. However,
our hybrid method is threefold. The LSM results are improved
by the CNN. Then, the strictly rigorous iterative method
BIM is used to invert for the dielectric parameters. It is
also different from the learning-assisted inversion methods
presented in [29] and [30], which first employs the neural
network to obtain preliminary dielectric images of scatterers
and then implements the FWI starting from these dielectric
parameters. The CNN in our work is only used to classify
the 3-D LSM images of scatterers buried in layered media
in the way of voxel by voxel and thus downsize the inversion
domain. The dielectric parameters of scatterers are completely
obtained by BIM.

The organization of this article is given as follows.
In Section II, the detailed description of the theory is pre-
sented, including the 3-D LSM in layered media, the 3-D FWI,
and the 3-D U-Net. In Section III, two different application
scenarios are used to verify the proposed hybrid method.
In Section IV, the conclusion and future work are presented.

II. METHODS

In this section, by combining with the conceptual diagram
for a typical configuration of 3-D subsurface imaging and FWI,
we first concisely introduce the principles and formulas of 3-D
LSM in layered media. Then, the 3-D FWI in layered media
is described briefly, including both the forward and inversion
models. Finally, the 3-D CNN U-Net used to repair the LSM
images is given in detail.

A. 3-D LSM in Layered Media

As shown in Fig. 1, the transmitter and receiver arrays
denoted by � locate in the air. It is assumed that there are Nt

transmitters and Nr receivers used in the measurement. The
3-D objects are buried in the homogeneous underground soil.

Fig. 1. Configuration of the 3-D imaging and FWI model.

The imaging and inversion domain denoted by D is discretized
into a number of independent cells. The location of each cell
is denoted by rs which represents one spatial sampling point
in the imaging domain. The 3-D LSM is to determine, for a
certain frequency, the gain matching relationship between the
scattered field data recorded at the receiver array and Green’s
function corresponding to the fictitious source point locating
at rs . The obtained gain is expected to be a limited number if
rs lies inside the object but will be very large if it is outside
the object [31].

The standard LSM formulation in 3-D vectorial geometry
requires monochromatic multipolarization multiview multista-
tic data [24], [31]. Therefore, the incident field radiated by
each transmitter provides two polarized components (ĥi , ĥ j ),
and for each polarization, it is necessary to measure the
scattered field in two polarized directions ( p̂i, p̂ j). Then,
for each pair (ĥi , p̂ j), we have the (Nt × Nr )-dimensional
multistatic response data matrix Fi, j [31], whose generic
element is the p̂ j polarized scattered field measured at the
mth receiver when the nth transmitter emitts an ĥi polarized
EM field [24]. Assuming that the solution of 3-D LSM is the
(2Nr )-dimensional unknown vector g = [g1(rs), g2(rs)], then
the formula of LSM can be written as follows:

Fg =
[

F1,1 F1,2

F2,1 F2,2

][
g1(rs)
g2(rs)

]
=
[

f1(rs)
f2(rs)

]
= f(rs) (1)

where f(rs) is composed of certain components of Green’s
functions and g is the indicator of the support of the scatterer.

In the layered media, we use the tangential components,
i.e., the x̂ or ŷ polarized EM waves for 3-D LSM. Because
a focused image still can be obtained even when the trans-
mitted and received EM fields with the same polarization
are used [24], we only retain two diagonal submatrices of F
in (1). Besides, f(rs) contains the diagonal components of the
layered medium dyadic Green’s function (DGF) that connects
the equivalent electric current in the imaging domain D and
the electric field at the receiver array. In this way, (1) can be
rewritten as follows:

Fg =
[

Fx̂ x̂ 0
0 F ŷ ŷ

][
g1(rs)
g2(rs)

]
=
[

G
x̂ x̂

EJ

G
ŷ ŷ

EJ

]
(2)
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where GEJ is the layered medium DGF and its derivation
can be found in [32]. Equation (2) is solved by transforming
it into an optimization problem and adding the Tikhonov
regularization term. Thus, we have

ĝ = arg min
g

‖Fg − f‖2
2 + η‖g‖2

2 (3)

where η is the regularization factor and ‖‖2 denotes the L2

norm. We choose this regularization because it guarantees
smooth reconstructed LSM images. After a series of differen-
tial operation and matrix transformation, the final regularized
solution can be simplified as

ĝ = (F†F + ηI
)−1

F†f (4)

where † refers to the matrix hermitian and I denotes the
identity matrix. Once ĝ is obtained, it is straightforward to
judge whether rs belongs to the object or the background by
setting a threshold [31], and finally, we can acquire the 3-D
shape of the object.

B. 3-D FWI in Layered Media

FWI is a data matching procedure, which utilizes the whole
wavefield to obtain quantitative information of the unknown
objects. It usually begins from an initial model and implements
the forward computation. Then, simulated data and measured
data are compared to adjust the model parameters of the
unknown objects. This procedure repeats until the mismatches
between simulated data and measured data are less than a
threshold. In our work, the unknown subsurface objects are
reconstructed. Thus, the FWI is implemented in the circum-
stance of layered media. As shown in Fig. 1, we assume
that the transmitters and receivers are placed in the nth layer,
while the unknown objects are buried in the mth layer. The
electric field integral equation (EFIE) is adopted to formulate
the forward and inverse scattering processes. We choose the
integral equation because its computation domain D tightly
wraps the subsurface objects and the unknowns in the dis-
cretized equation are limited. The forward scattering can be
described by the state equation, which is expressed as

Em
inc(r)=Em

tot(r)− jωεb

∫
D

G
mm

EJ

(
r, r′) · χ(r′)Em

tot

(
r′)dr′ (5)

where Em
inc and Etot are, respectively, referring to the incident

electric field and the total electric field in the inversion
domain D. In addition, χ is the contrast function of the
object with respect to the background medium and defined
as χ = (ε/εb − 1), where ε is the complex permittivity.
The layered DGF GEJ is computed by the transmission line
analogy [32]. In the forward scattering computation, (5) is
discretized and the stabilized biconjugate gradient fast Fourier
transform (BCGS-FFT) is employed to solve for Etot in the
inversion domain. Details can be found in [33] and [34] and
will not be repeated here. Note that we choose the BCGS-FFT
solver instead of using the direct solver because it can lower
the computational time cost from O(N3) to O(K N logN),
where K is the iteration number and N is the discrete
unknowns in the computational domain [34].

The inverse scattering model is formulated by the data
equation, which is expressed as

En
sct(r) = jωεb

∫
D

G
nm

EJ

(
r, r′) · χ

(
r′)Em

tot

(
r′)dr′ (6)

where G
nm

EJ is the DGF of the layered medium, which connects
the equivalent electric current sources in the mth layer and
the receivers in the nth layer. En

sct is the scattered field at the
receiver array. FWI is to search for the optimized χ of (6) in
all the discretized cells from En

sct. We construct the L2 norm
cost function in the framework of BIM [17]

C(xk) = ‖b − Akxk‖2
2

‖b‖2
2

+ γ
R(xk)

R(xk−1)
(7)

in which b is a vector including the measured scattered field
data, A is the Fréchet derivative matrix being composed of
the DGF and the total field solved by BCGS-FFT, and x
is a vector containing the unknown model parameters. The
detailed elements of b, A, and x are listed in the Appendix.
The subscript k means the kth iteration of BIM. Note that the
matrix A also depends on the vector x. Therefore, in BIM,
Ak is assembled by DGF and the total field obtained by
BCGS-FFT in the (k − 1)th iteration. In this way, (7) is
linearized. γ is the regularization factor and R is the total
variational (TV) regularization, which is written as

R(x) = ‖
√

(Dx x)2 + (Dyx
)2 + (Dzx)2‖1 (8)

where ‖ · ‖1 represents the L1 norm and Dx , Dy , and Dz stand
for the discrete difference matrices in three directions [35].
The purpose of TV regularization is to force the reconstructed
scatterer to have a sharp boundary and smooth spatial distri-
bution in the interior [36]. The square root in (8) acts on the
sum of squares in the way of voxel by voxel. In each iteration
step, the TV regularization is converted into the L2 norm
regularization by the reweighting method [35]. Consequently,
the whole cost function (7) is in the form of L2 norm. It can
be minimized by solving its first derivative function using the
conjugate gradient (CG) method [17], [37]. In the 3-D FWI,
the initial model of BIM is the known background medium.
Compared with LSM that only finds the scatterer support, FWI
can directly invert for both the shape and dielectric parameters
of the scatterer. However, because FWI needs to solve the
nonlinear equation (7), iterations are inevitable. Therefore, (5)
and (6) are solved alternately by the BCGS-FFT and BIM.
This alternate iteration continues until the misfit between the
measured scattered field and the calculated field reaches a stop
criterion.

C. 3-D CNN U-Net

Because the image of the subsurface 3-D object recon-
structed by LSM from the limited-aperture scattered field data
recorded at the receiver array is poor, we use the traditional
3-D CNN U-Net given in [25] and [26] to repair it. The
3-D U-Net is originally proposed for segmenting biomedical
images and classifies images at the voxel level. As shown
in Fig. 2, the U-Net consists of a contracting path (the left side)
and an expanding path (the right side), forming a U-shaped
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Fig. 2. Architecture of the 3-D CNN U-Net.

structure as a whole. The contraction path is used to obtain
the context information, i.e., to extract the key features of the
image in several steps of downsampling by convolutions with
different kernels. By contrast, the expansion path is used for
precise localization. Its function is to restore the main features
of the entire image by upconvolutions. The contracting path
follows the typical architecture of a convolutional network,
which consists of four same parts. Each part includes two
3×3×3 convolution layers with the ReLu activation function
and 2×2×2 max-pooling operation with stride 2 for downsam-
pling. Through downsampling, the number of feature channels
will be doubled. Symmetrically, the expansion path includes
four parts as well, each of which has a 2 × 2 × 2 upsampling
convolution layer with the ReLu activation function and two
3 × 3 × 3 convolution layers also with the ReLu activation
function. It is worth noting that the concatenations between
the layers in the contracting path and expansive path are used
to compensate for the information loss in the downsampling.
Besides, in the output layer, we set a 1 × 1 convolution layer
with the sigmoid activation function.

As we all know, the loss function can well reflect the
mismatch between the modeled and the actual sampling data.
Here, we choose the Tversky loss [38] as the cost function for
training, which can be expressed as

Tversky Loss = 1 − |P ∩ T|
|P ∩ T| + α|P − T| + β|T − P| (9)

where T is the true 3-D image of the object, i.e., the label
used in the training, P is the predicted image, |P ∩ T| denotes
the number of coincident voxels of T and P, and |P − T|
refers to the number of voxels that are originally belonging
to the background medium but are misjudged to belong to
the object. Similarly, |T − P| is the number of voxels that
are originally belonging to the object but are misjudged to
belong to the background medium. The hyperparameters α
and β are the weights that control the magnitude of penalties
for false positives and false negatives, respectively. When both

α and β are equal to 0.5, the Tversky loss degenerates into the
dice loss [39]. Note that there are two reasons for choosing
the Tversky loss for our U-Net. One is that it is suitable for
the situation where the number of positive samples (“object”
voxels) is greatly different from that of negative samples
(“background” voxels). In 3-D inversion problems, the positive
samples are much less than negative samples. The other reason
is that it directly uses evaluation indexes for training.

III. NUMERICAL RESULTS

In this section, we use two subsurface detection models: the
ground penetrating radar (GPR) detection model and the sub-
surface drilling model to verify the feasibility of our proposed
hybrid method. In the first GPR model, an inhomogeneous
object with a complex shape is buried underground. The
transmitter and receiver arrays are placed in the air. In the sec-
ond subsurface drilling model, multiple homogeneous objects
with different shapes are buried underground. Transmitters and
receivers are placed inside the underground boreholes. In this
case, the antinoise performance of the proposed hybrid method
is also tested. In order to quantitatively evaluate the inversion
performance, we introduce two indicators: the model misfit
and the data misfit. The model misfit denotes the difference
between the inverted dielectric parameters and the true para-
meters in all the discretized cells. The data misfit denotes
the difference between the calculated and measured scattered
fields at the receiver array. Their definitions are given in [40,
eqs. (17) and (18)]. The operating frequency used for 3-D LSM
is 2 GHz in both numerical cases but is lowered to 300 MHz
in the FWI to ensure iteration stability. The regularization
factor η in the LSM is empirically set as 0.004, while γ in
the FWI is set as 0.005. With many times of experiments
in this work, the weights α and β in the Tversky loss are
set as 0.5. All the numerical experiments are performed on
a workstation with 20-cores Xeon E2650 v3 2.3-G CPU,
512-GB RAM. The U-Net is trained on an NVIDIA Titan Xp
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Fig. 3. (a) Basic geometry of the 3-D objects used for training U-Net in the
GPR subsurface detection model. (b) Training and validation convergence
curves.

GPU. In both numerical examples, the optimization method for
U-Net is the Adam optimizer [41] with the hyperparameters
β1 = 0.9, β2 = 0.999, ε = 0, and the learning rate being equal
to 5 × 10−4.

A. Case 1: GPR Model

As shown in Fig. 1, the imaging and inversion domain
has the dimensions of 0.64 m × 0.64 m × 0.64 m and is
discretized into 32 ×32 ×32 cells. The upper boundary of the
inversion domain is at z = 0.3 m. The underground medium
has a relative permittivity of 2.5. The unknown object buried
inside it is inhomogeneous and has an irregular shape. The
transmitter array locates at the zs = −0.2 m plane and includes
8 × 8 transmitters. The distance between two transmitters is
0.3 m. The receiver array locates at the zr = −0.4 m plane
and consists of 8 × 8 receivers with the interval of 0.3 m
between two. All transmitters and receivers are used when the
3-D LSM is implemented. However, only 6 × 6 transmitters
and 6×6 receivers are used for FWI. For the U-Net, the input
is the 3-D LSM image having gray values. Its output is the
3-D binary image. The dimensions of both the input and the
output are 32 × 32 × 32.

As shown in Fig. 3(a), the training dataset of U-Net contains
a total of six 3-D simple shapes, including ellipsoids, cylinders,
cones, hemispheres, cuboids, and the random combinations of
cuboids. We combine the cuboids to form the concave shapes,
e.g., a cross, and let the U-Net learn it in the training. Each
sample in the training dataset has one of the above shapes,
and it randomly exists in any position of the inversion domain
with different sizes. The relative permittivity of the object
randomly changes between 2.8 and 4.0. Totally, we randomly
generate 1100 3-D samples. Among them, 1000 samples are
used for training and 100 ones are for validation. The inputs
of U-Net are the 3-D shapes reconstructed by LSM. Its labels
are the true shapes. As shown in Fig. 3(b), after 500 epochs
of training, the training loss stably remains 0.003, while the
validation loss stably remains 0.07. These low loss values
not only guarantee the reconstructed shape resembling the
true shape but also ensure the compressed inversion domain
containing the whole unknown objects in a large probability.

Although the 3-D U-Net is trained only by homogeneous
objects, inhomogeneous objects formed by combing different
homogeneous simple shapes are used in the testing. As shown
in the first and second columns of Fig. 4, an “L” shape,
a mushroom, a warehouse, and an ice cream are used to test

the LSM algorithm and the U-Net. The LSM images shown
in the third and fourth columns are obtained by

G(rs) = − log(ĝ(rs) · ĝ(rs)). (10)

A direct observation is that the 2-D slices in the xy plane
are much closer to the true shapes than those in the xz
plane. The reason is that both the transmitter and receiver
arrays locate in the xy plane. The array aperture is large
enough in the horizontal direction but very limited in the
vertical direction. By utilizing a threshold to limit the voxel
classification, we obtain the 3-D LSM results of the subsurface
objects via brutal cut and they are shown in the fifth column of
Fig. 4. The threshold is selected by multiplying the maximum
value of the LSM values in all the voxels in the imaging
domain by an empirical constant, which can be expressed as

threshold = C max
rs

G(rs) (11)

where the empirical constant C is adjustable for the best shape
to contain the whole scatterers [31]. The sixth column in Fig. 4
shows the 3-D LSM images repaired by the U-Net. Obviously,
compared with the results shown in the fifth column, the 3-
D images by U-Net get great improvements by significant
repairments of the distorted shapes in the xz plane and the
3-D shapes become very close to true shapes.

Then, we conduct comparative experiments of FWI by BIM
to reconstruct the permittivity of the four subsurface objects in
Tests #1–4, as shown in the first and second columns of Fig. 4.
The inversion is implemented in the whole inversion domain,
the imaging region judged via the threshold classification, and
the imaging region judged via the U-Net classification. The
results are shown in Fig. 5. Three observations are made. First,
due to the single-sided illumination and limited aperture of the
antenna array, the inversion results by BIM implemented in
the whole inversion domain are far from the ground truths,
which is reflected in the much larger reconstructed shapes
and excessively smaller inverted permittivities compared to the
ground truths. Second, performing FWI in the imaging region
judged via the threshold classification also fails to obtain good
results although the computational cost significantly lowered
since the 3-D inversion domain is reduced. The inversion
results are shown in the second and fifth columns of Fig. 5.
We can see that the reconstructed shapes resemble the true
shapes only in the xy plane but are distorted obviously in
the xz plane. This is also illustrated by the LSM images
shown in the third and fourth columns of Fig. 4. In addition,
the inverted permittivity values are also different from the
true parameters. This once again shows that the standard
LSM imaging method for the reconstruction of 3-D objects
from limited-aperture EM data has great limitations. Third,
the aforementioned drawbacks can be compensated by the 3-D
U-Net, which effectively restores the subsurface object shapes,
and thus, the FWI is implemented in a more accurate inversion
domain. The reconstructed results are shown in the third and
sixth columns of Fig. 5. We can see that both the shapes and
permittivity values are close to the ground truths.

Fig. 6 shows the variations of data misfits in Tests #1–4 for
all three types of inversion. Due to single-sided illumination
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Fig. 4. Ground truths, LSM imaging results, and the voxel classification results in the four tests. Columns 1 and 3 show the 2-D xz slices. Columns 2 and 4
show the 2-D xy slices. Column 5 shows the LSM results based on the threshold cut. Column 6 shows the LSM results based on 3-D U-Net.

Fig. 5. FWI results by BIM implemented in the whole inversion domain, the imaging region judged via the threshold classification, and the imaging region
judged via the U-Net classification. Columns 1–3 show the 2-D xz slices of inversion results. Columns 4–6 show the 2-D xy slices of inversion results.

and limited aperture, among the three types of inversion, FWI
implemented in the whole region has the largest data misfit.
By contrast, because the restored shapes by U-Net coincide

with the true shapes well, the FWI implemented in the imaging
region judged via the U-Net classification has the smallest
data misfit. Another obvious comparison is the computational
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Fig. 6. Comparisons of convergence curves of BIM for the three methods
in the four tests.

TABLE I

MODEL MISFITS (%) FOR BIM, LSM+TH+BIM,
AND LSM+U-NET+BIM

cost. For example, in Test #1, totally, there are 32 768, 554,
and 459 discretized cells for the whole inversion domain,
the inversion domain judged via the threshold classification,
and the inversion domain judged via the U-Net classification,
respectively, that is to say, the computational cost of the
proposed threefold hybrid method is also the lowest. Table I
lists the model misfits of reconstructed permittivity values
when the iterations terminate. It can be seen that among the
three methods, the FWI implemented in the region judged via
the U-Net classification has the smallest model misfit.

B. Case 2: Subsurface Drilling Model

The subsurface drilling model is shown in Fig. 7. The
inversion domain enclosing the objects has the dimensions
of 0.64 m × 0.64 m × 1.28 m and is discretized into
32 × 32 × 64 cells. Therefore, the input and output of the
U-Net, in this case, have the dimensions of 32 × 32 × 64. The
underground medium has the relative permittivity of 2.5 and
conductivity of 1 mS/m. Eight receivers and eight transmitters
are placed in each borehole. Eight boreholes are drilled around
the inversion domain, and the locations are shown on the right
of Fig. 7. All these transmitters and receivers are used in the
3-D LSM imaging. However, only six transmitters in each
borehole and six receivers in each borehole are used in the
FWI. As shown in Fig. 8(a), the basic shapes of the 3-D
objects used in the training dataset are the same as those in
Case 1. However, multiple homogeneous objects with different
shapes are allowed to be placed inside the inversion domain.

Fig. 7. Configuration of the 3-D subsurface drilling model.

Fig. 8. (a) Basic geometry of the 3-D objects used for training U-Net in the
subsurface drilling model. (b) Training and validation convergence curves.

Therefore, for each training sample, two or three objects coex-
ist without overlapping each other. The relative permittivity
values of the objects distribute randomly between 2.8 and 4.0.
Meanwhile, their conductivities are assigned random values
between 1 and 5 mS/m. In order to enhance the antinoise
ability of the proposed hybrid method, we contaminate the
simulated scattered field with 20-dB white Gaussian noise,
which leads to approximately 10% errors of the data. Here,
the noise level is defined according to the signal-to-noise
ratio (SNR) of power. Similar to Case 1, we also set up
1000 training samples and 100 validation samples and train the
U-Net for 500 000 epochs. The loss variation curves are shown
in Fig. 8(b). We can see that the training loss and validation
loss finally stably remain as 0.02 and 0.18, respectively, which
are much larger than those shown in Fig. 3(b). One important
reason for this phenomenon is the existence of multiple objects
inside the inversion domain, which leads to mutual scattering.
Consequently, the LSM images become worse and the learning
task becomes more difficult for U-Net.

In the online prediction, we choose three models that
include one, two, and three homogeneous objects. The ground
truths of these testing models are shown in Fig. 9. Test #5 has
only one “H”-shaped object whose relative permittivity value
exceeds the maximum permittivity 4.0 in the training dataset.
The inversion domain in Test #6 includes a sphere and a
cube. Test #7 is challenging since it has three objects buried
underground. They are a cone, a cube, and a warehouse.
In addition, we also verify the antinoise ability of our method
by comparing the reconstruction results for the simulated
scattered field data contaminated by noise with different levels.
The imaging results are shown in Fig. 10. The first three
columns show the LSM results of the three models under
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Fig. 9. Ground truths of three tests in Case 2.

Fig. 10. LSM results and U-Net classification results under three different noise levels. Columns 1–3 show the LSM results. Columns 4–6 show the U-Net
classification results.

different noise levels. The last three columns are the 3-D
images by U-net recovery.

Obviously, as the noise increases, both the LSM images
and the shapes recovered by U-Net become worse and worse.
Another interesting observation is the comparison among the
results for the three models. We can see that the “H” shape
in the imaging results is still discernible even when the
scattered field data are contaminated by 20-dB noise. This
is clearly shown in Fig. 10(c). However, when there are two
objects coexisting in the inversion domain, the limitation of
the standard LSM is clearly manifested. We can only see
that there are two objects in the LSM images, as shown

in Fig. 10(g)–(i). Their shapes are severely distorted. When
there are three objects, the LSM images of three objects stick
together. It seems that there is only one object in the imaging
domain, as shown in Fig. 10(m)–(o). Fortunately, both the
distorted shapes and indiscernible objects can be effectively
recovered by the trained 3-D U-Net. The results are shown in
columns 4–6 of Fig. 10. We can see that the restored shapes in
Tests #5 and 6 are roughly consistent with the ground truths
even when the 20-dB noise is added. In Test #7, the tip of
the cone is lost in the U-Net results. The cone is restored
to be a half-sphere when noise free. It even becomes a cube
when 20-dB noise is added. In other words, although the U-net
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Fig. 11. FWI results by BIM implemented in the imaging region judged via the U-Net classification under three different noise levels. Columns 1–3 show
the reconstructed permittivity. Columns 4–6 show the reconstructed conductivity.

TABLE II

MODEL MISFITS (%) OF INVERTED PARAMETERS WHEN THE SCATTERED

FIELD DATA ARE CONTAMINATED BY NOISE WITH DIFFERENT SNRs

can improve LSM imaging results, shape distortion cannot be
absolutely avoided, especially when the measured scattered
field data are contaminated by large noise or when the shape
of the object is too irregular.

Finally, we perform FWI by BIM based on the results
of U-Net recovery to obtain the dielectric parameters of
the subsurface objects. The results are shown in Fig. 11.
By comparing with the ground truths shown in Fig. 9, the FWI
implemented in the imaging region judged via the U-Net
classification can effectively reconstruct both the permittivity
and the conductivity of multiple subsurface objects even when
they have irregular shapes. Of course, due to the addition
of noise and the limitation of LSM itself, the deviation of
the inverted model parameters from the true values is also
inevitable. This is clearly shown in Fig. 11(o) and (r). Table II
lists the model misfits of Tests #5–7 under three different

noise levels. Obviously, as the noise level increases, the model
misfits increase. This is because the LSM images become
worse when the scattered field data are contaminated by noise.
The recovered images by U-Net then also become worse, and
thus, the compressed inversion domain deviates away from the
true shape of the object. Another observation is that the model
misfits become larger and larger from Tests #5 and #7. For
multiple objects buried in the underground inversion domain,
mutual EM scattering takes the effect. The nonlinearity will
deteriorate both the LSM imaging and FWI results.

IV. CONCLUSION AND FUTURE WORK

In this article, we propose a threefold hybrid EM FWI
method to reconstruct the subsurface objects when the antenna
array has the limited aperture. The method includes three steps.
First, the 3-D LSM is employed to qualitatively reconstruct the
shapes and locations of the underground objects. Compared
with the iterative FWI methods, e.g., BIM, the computational
time of LSM is negligible. However, the images obtained by
LSM have poor quality due to the limited illumination angle.
Therefore, in the second step, we improve the images by using
a 3-D U-Net. Finally, in the FWI phase, we implement BIM
in the imaging region judged via the U-Net classification to
reconstruct the dielectric parameters of subsurface inhomoge-
neous objects or multiple homogeneous objects in different
scenarios.
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In order to validate the feasibility and efficiency of the
proposed subsurface detection method, we apply it to two
different scenarios: the GPR detection and the subsurface
drilling detection. We conducted a series of comparative
experiments, including the performance comparison with the
traditional inversion method and comparisons of inversion
results under different noise levels. Experimental results show
that this method has excellent performance on inversion,
which effectively reduces the ill-posedness, improves the
inversion accuracy, reduces the amount of calculation, as well
as has a certain antinoise performance. At the same time,
the inversion experiments in these two scenarios also show the
possible applications of our method in practical engineering
measurements.

In recent years, with the continuous increase of infrastruc-
ture and the increasing emphasis on shallow ground resources,
the development of underground space has gradually accel-
erated, and the research on subsurface detection technology
has also increased. The future work of our research will be
focused on many practical subsurface detection applications
such as unexploded object detection. The proposed hybrid
method will be used to invert the field measured data to
obtain high-accuracy parameters of unknown objects buried
underground.

APPENDIX

Equation (6) can be discretized and written as

b′ = A′x′ (A1)

where

b′ = [
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Note that only two horizontal electric components are used in
the inversion. i T ∈ [1, Nt ], i R ∈ [1, Nr ], and k ∈ [1, Nx Ny Nz ]
are the indexes of transmitters, receivers, and discrete voxels
in the inversion domain, respectively. �V is the volume of a
discrete voxel. Equation (A1) is a complex-number equation
and a real-number equation can be obtained by splitting it

b = Ax (A3)

where
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